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§  Introduction  
§  Experimentally studied properties of fission 
§  Experimental facilities 
§  Detectors 
§  State of the art and future developments 
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§  Ida Noddack suggested that uranium nuclei might 
break up under neutron bombardment in 1934. 

§  Hahn and Strassmann, 1938: Neutron irradiation of 
uranium produces barium. 

§  Communicates results to Lise Meitner, who is in 
Sweden as a war refugee. 

§  Lise Meitner and her nephew Otto Frisch explains 
the result as nuclear fission, makes estimate of 
energy release.  

§  Frisch uses uranium-lined ionization chamber and 
radium beryllium source to confirm fission. 
[Nature 143, p. 276 (1939)]  

§  Hahn receives the Nobel price in chemistry in 1944 
for the discovery of fission  

Discovery of nuclear fission 
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Fission experiments – what can we 
measure? 
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Cross sections 

Product properties 

Prompt emission 

Delayed emission 

Independent 
yields 

Cumulative 
yields 
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§  Fissility of isotopes 
–  Fissile = no threshold for neutron 

induced-fission 
–  Fissionable = has threshold 

energy for neutron-induced fission 
–  All the other isotopes that won’t 

fission no matter what 

§  Neutron energy regions 
–  Thermal 
–  Resonance region 
–  Unresolved resonance region 
–  Fast region 
–  Multiple-chance fission = fission 

following neutron emission  

Cross sections 

Slide 5 

ENDF/B-VII.1 



Operated by Los Alamos National Security, LLC for the U.S. Department of Energy's NNSA 

UNCLASSIFIED 

§  Actinides generally exhibit asymmetric mass distributions, with small symmetric 
component 

§  Heavy peak about the same for all actinides, light peak shifts to make up for 
difference in compound system mass 

§  Relative contribution from symmetric fission increases with increasing excitation 
energy  

Fission fragment mass 
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J. Lestone, Nuclear Data Sheets  112, 3120 (2011) 
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§  Fission fragment charge distributions exhibit 
strong odd-even effects 

§  Effect decreases with increasing mass of the 
fissioning system 

Fission fragment charge 
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F. Gönnenwein, Physics Procedia 47, 107 (2013) 
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§  Most energy released in fission is in the form of kinetic energy of the fission fragments 

§  Total kinetic energy (TKE) release is about 160-180 MeV (on average) 
–  Decreases with increasing incident neutron energy – more energy goes to excitation of 

fragments 
–   TKE distribution have a FWHM of about 25 MeV 

§  Light fragment has more narrow distribution of kinetic energies than heavy fragment 

Fission fragments – kinetic energies  
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Total kinetic energy Fragment distributions 
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§  Fission fragments angular 
distributions are generally not 
isotropic in neutron-induced 
fission 

§  Experimental data often 
presented at anisotropy (w(0)/
w(90)) 

§  Detailed measurements in 1950s 
of several isotopes, 0-10 MeV  

Fission fragment angular distributions 

Slide 9 

J. E. Simmons et al., Phys. Rev. 120, 198 (1960) 
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§  Average number of prompt neutron 
emitted = 2.5 

§  Average energy = 2 MeV 

§  Energy distribution well described by 
Watt function 

Prompt Neutrons 
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T. Ethvignot et al., Phys. Rev. Lett. 94, 31 (2005) N. Nereson, Los Alamos Sci. Lab. Report #LA-1078 (1950) 
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§  Gamma ray multiplicity is high in 
fission, 7-8 on average 

§  Most individual gamma rays are <1 
MeV 

§  Average energy released per 
fission is about 6-7 MeV 

Prompt gamma rays 
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Chyzh et al., Physical Review C 85, 021601 (2012)  
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§  Reactors are intense sources of 
thermal neutrons 
–  ILL high-flux reactor produces 

1015 neutron per cm2 and second 
in the moderator region 

§  Some experiments can only be 
performed at reactors 
–  The Lohengrin fission product 

spectrometer provides excellent 
data, but low efficiency require 
high fission rates 

§  Disadvantage of reactor experiments 
is that we often want to study 
changes in the fission process as a 
function of excitation energy    

Neutron facilities – reactors 
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§  Mono-energetic neutrons can be made through several reactions 
–  Li(p,n) 
–  2H(d,n)3He 
–  3H(p,n)3He 
–  3H(d,n)4He 

§  Van de Graaff accelerators are often used to produce mono-energetic 
neutrons 
–  Example: 7 MV VdG at IRMM, Geel, Belgium 

•  Produces  mono-energetic neutron beams from 0.1 to 24 MeV 

§  Other accelerators, such as cyclotrons, are also used to produce mono-
energetic neutrons 
–  Example: The Svedberg Laboratory, Uppsala Univ., Sweden 

•  High energy mono-energetic neutrons made through Li(p,n) 
•  Neutron energies are 0 – 200 MeV 

Neutron facilities – mono-energetic 
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§  White spectrum of neutrons is produce by pulsed beam 

§  Energy of neutrons are determined by measuring the time-of-flight (TOF) over some flight path 

§  Electron beam facilities 
–  GELINA 

•  Linear electron accelerator, 100 MeV, 800 Hz repetition rate, 10 ns wide pulses 

•  Uranium target: electron beam produces bremsstrahlung, photonuclear reactions make neutrons 

•  Flight path lengths are 10, 30, 50, 60, 100, 200, 300 and 400 meters 

§  Spallation facilities 
–  Neutrons produced when high energy ion beam hits high-Z material 
–  Makes neutrons ranging from 0 to hundreds of MeV 
–  LANSCE-WNR 

•  800 MeV proton beam on tungsten (wolfram) target 

•  Flight pats 6 – 25 meters 

•  1.8 us repetition rate -> lower neutron energy limit is about 100 keV 

–  N_TOF 
•  20 GeV proton beam hit lead target 

•  20 and 200 meter flight paths 

•  0.5 Hz repetition rate -> usable neutron spectrum for thermal to hundreds of MeV  

Neutron facilities – time-of-flight 
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Fragment detectors – gas  
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§  Parallel plate ionization chambers 
–  Signal proportional to energy and angle 
–  Fragments don’t range out 
–  Good alpha particle to fission separation 

§  Bragg chamber (Frisch-gridded) 
–  Anode shielded by grid 
–  Signal directly proportional to energy, independent of angle 
–  The grid signal can be used to measure particle emission angle 

Fragment detectors – ion chambers  
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§  Parallel Plate Avalanche Counter (PPAC) 
–  30% energy resolution for fission 
–  Very fast timing response (<1ns) 

§  Muli-wire proportional chamber (MWPC) 

Fragment detectors – proportional 
counters  
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§  Provides 3D particle 
tracking 

§  Energy resolution of few 
percent 

Fragment detectors – TPC 
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§  Relative good energy resolution for fission fragments: 2% 
§  Higher pulse height defect compared to gas detectors 
§  Sometime segmented to provide position information 
§  Solar cells have been used to detect fission fragments – low cost 

fission trigger 

Fragment detectors – Surface barrier 
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Passivated Implanted 
Planar Silicon (PIPS) 
Detector from Canberra 
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Fission fragment – Time-of-flight 
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A.V. Kuznetsov, Nucl. Inst. Meth. A 452, 525 (2000) 

§  Time signal can be obtained by detecting the secondary electrons produced 
when fission fragments pass through thin film 

§  Micro-channel plates (MCP) commonly used to detect secondary electrons due 
to fast timing response (0.2-2 ns rise time)  
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§  Masses are selected 
using electromagnetic 
fields 

Mass separators 
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§  Plastic or liquid scintillators are used to detect fast neutrons 

§  Neutrons interacts with protons in the scintillating material 

§  Photons undergo Compton scattering on electrons 

§  The charged particles excite molecules in the scintillator, and they subsequently 
de-excite by emitting visible light 

§  The photons cases a cascade of electrons in the photomultiplier tube through the 
photo-electric effect 

§  Some scintillators, such as NE213, exhibit different signal decay times for 
neutrons and photons, which can be used to separated the two types pf radiation 

Neutron detectors – High Energy 
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NE213 response for different 
radiation types 

NE213 neutron detection efficiency 
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§  Insensitive to gamma 
rays 

§  Highly efficient for 
thermal neutrons 

§  Shortage of 3He is 
effecting availability 

 

Neutron detectors – Low energy 

Slide 23 

He-3 tubes BF3 chambers Li-glass 

§  10B + n → 7Li + α 

§  Q-values: 
–  2.79 MeV (Li in 

excited state) 
–  2.31 MeV (Li in 

ground state) 

 

 

§  6Li + n → 3He + α 

§  Q-value: 4.78 MeV 

§  Have found new use 
in fibers 
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§  Inverse kinematics 
–  Excellent mass and charge resolution 
–  GSI measurements 
–  New spectrometer 
–  FRIB 

§  2E-2v instruments 
–  Some masses and charges resolved 
–  Cosi-fan-tuti (1980’s) 
–  SPIDER, STEFF, VERDI, … 

§  Time projection chambers (TPC) 
–  Tracking opens up new possibilities 
–  New technology brings cost down  

§  New neutron facilities 
–  N_Tof 
–  LANSCE with pulse stacking 

State of the art and future development 
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§  1 GeV U-238 beam fragmented on 
lead target 

§  Secondary fragment species identified 
in terms of A and Z 

§  Fragment beam hit second lead target, 
undergoing coulomb fission with 11 
MeV excitation energy on average 

§  The fragments were identified in terms 
of Z using dE/E 

§  Gives access to large number of 
fissioning systems in one experiment 

§  Demonstrates the regions on the 
nuclear map where transition from 
asymmetric to symmetric fission occur 

Inverse kinematics  - GSI 
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K.H. Schmidt et al., NPA 665, 221 (2000) 
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§  Inverse kinematic with mass and charge 
identification of fission fragments 

Inverse kinematics – SOFIA 
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G. Boutoux et al., Physics Procedia 47, 166 (2013) 
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§  Neutron induced fission 

§  Energy and velocity of fragments measured 

§  Light fragments resolved 

2E-2v – Cosi-fan-tutte 
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FPY measured with COSI-FAN-TUTTE 

Nuclear charge distribution for A=87 
N. Boucheneb et al., NPA 502, 261 (1989) 
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§  Relative high efficiency 
(0.2%) 

§  Development ongoing 
to reduce energy 
straggling in windows 

2E-2v - SPIDER 
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§  2E-2v spectrometer combined 
with gamma-ray detectors 

§  Currently at ILL 

§  Plan to run at n_TOF 

§  Mass resolution 3% 

2E-2v - STEFF 
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§  Developed for high 
precision cross sections 

§  Other potential uses 
–  Ternary fission 
–  Angular distributions 

The fission TPC 
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M. Heffner, D.M. Asner, R.G. Baker, el al., A Time Projection Chamber for High Accuracy and Precision 
Fission Cross Section Measurements, submitted to Nucl. Instr. and Meth. 
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Questions? 
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